PowderBulk.com
is available for sale
About PowderBulk.com
Former domain of a monthly technical publication exclusively for readers in the North American powder and bulk solids market.
Exclusively on Odys Marketplace
$6,460
What's included:
Domain name PowderBulk.com
Become the new owner of the domain in less than 24 hours.
Complimentary Logo Design
Save time hiring a designer by using the existing high resolution original artwork, provided for free by Odys Global with your purchase.
Built-In SEO
Save tens of thousands of dollars and hundreds of hours of outreach by tapping into the existing authority backlink profile of the domain.
Free Ownership Transfer
Tech Expert Consulting
100% Secure Payments
Premium Aged Domain Value
Usually Seen In
Age
Traffic
SEO Metrics
Own this Domain in 3 Easy Steps
With Odys, buying domains is easy and safe. Your dream domain is just a few clicks away.
.1
Buy your Favorite Domain
Choose the domain you want, add it to your cart, and pay with your preferred method.
.2
Transfer it to your Registrar
Follow our instructions to transfer ownership from the current registrar to you.
.3
Get your Brand Assets
Download the available logos and brand assets and start building your dream website.
Trusted by the Top SEO Experts and Entrepreneurs
Rachel Parisi
★ ★ ★ ★ ★
I purchased another three aged domains from Odys in a seamless and painless transaction. John at Odys was super helpful! Odys is my only source for aged domains —you can trust their product.
Stefan
★ ★ ★ ★ ★
Odys is absolutely the best premium domain marketplace in the whole internet space. You will not go wrong with them.
Adam Smith
★ ★ ★ ★ ★
Great domains. Great to deal with. In this arena peace of mind can be difficult to come by, but I always have it with Odys and will continue to use them and recommend them to colleagues and clients.
Brett Helling
★ ★ ★ ★ ★
Great company. Very professional setup, communication, and workflows. I will definitely do business with Odys Global moving forward.
Larrian Gillespie Csi
★ ★ ★ ★ ★
I have bought 2 sites from Odys Global and they have both been of high quality with great backlinks. I have used one as the basis for creating a new site with a great DR and the other is a redirect with again high DR backlinks. Other sites I have looked through have low quality backlinks, mostly spam. I highly recommend this company for reliable sites.
Henry Fox
★ ★ ★ ★ ★
Great company!
Vijai Chandrasekaran
★ ★ ★ ★ ★
I’ve bought over 30 domains from Odys Global in the last two years and I was always very satisfied. Besides great quality, niche-specific auction domains, Alex also helped me a lot with SEO and marketing strategies. Auction domains are not cheap, but quality comes with a price. If you have the budget and a working strategy, these domains will make you serious money.
Keith
★ ★ ★ ★ ★
Earlier this year, I purchased an aged domain from Odys as part of a promo they’re running at the time. It was my first experience with buying an aged domain so I wanted to keep my spend low. I ended up getting a mid level DR domain for a good price. The domain had solid links from niche relevant high authority websites. I used the site as a 301 redirect to a blog I had recently started. Within a few weeks I enjoyed new traffic levels on my existing site. Happy to say that the Odys staff are friendly and helpful and they run a great business that is respected within the industry.
Feature
How an isolation flap valve works
David Grandaw, IEP Technologies
imageThe isolation flap valve, as shown in Figure 1, consists of a cylindrical housing with a covered inspection port and a flap blade (or plate) that rotates on a shaft as the valve opens and closes. The valve is mounted in the horizontal inlet duct just upstream from the dust collector. The minimum and maximum distances from the dust collector inlet are determined by the valve manufacturer and confirmed through independent, third-party testing.
The valve's operation is passive (or flow actuated), meaning that no external input device is required to close the flap blade when a deflagration occurs. Typically, when no air is flowing in the system, the isolation flap valve's default position is closed. When process air is flowing downstream during normal operation, the air pushes the flap blade open and passes through the valve to the dust collector. If a deflagration occurs in the dust collector, the pressure wave created causes the process air to reverse and flow upstream in the system. The pressure wave rapidly pushes the flap blade closed, preventing the deflagration's slightly slower-moving flame front from propagating upstream past the valve and causing secondary explosions.
Because of the isolation flap valve's widespread use, in 2014 the NFPA revised NFPA 69 to include a new section (Section 12.2.3) on flow-actuated flap valves. This new section details flap valve and system design criteria, application limits, and system certification requirements including:
Flap-blade locking. The flap valve must be equipped with a locking or latching mechanism to prevent the flap blade from reopening during a deflagration. With no locking mechanism in place, the pressure wave generated by a deflagration could cause the flap to reopen or bounce as it closes against the valve housing. This could allow flames and uncombusted material to travel past the flap blade and ignite additional upstream material, leading to a secondary explosion.
Process interlocks. The flap valve must provide for process interlocks to signal an immediate, automatic process shutdown should the valve close due to a deflagration. An interlock is typically a 24-volt DC switch that's connected either to an interface panel or through a relay to a PLC. When the valve closes, the switch is tripped, shutting down the process and ensuring that feed material doesn't continue to flow into the system and fuel a subsequent explosion or fire.
Continuous monitoring. The flap valve must provide a continuous monitoring signal to ensure that the valve's operation isn't compromised by dust accumulation. While the process is running, dust can accumulate in the flap valve and prevent the flap blade from fully closing and sealing during a deflagration. This could allow flames or burning material to pass upstream and cause a secondary explosion.
Mounting an accumulation sensor at the valve's base to continuously sense dust deposits meets this requirement. The sensor is typically wired into a PLC or interface panel, which initiates an immediate process shutdown if dust deposits are detected. Some sensors allow you to adjust the sensitivity depending on the material and desired accumulation thickness, which can help to eliminate process shutdowns from minor material accumulation.
Some flap valves rely on flap-blade-position sensing to indicate whether the valve is open or closed, but this doesn't necessarily meet NFPA 69 requirements. A flap-blade-position sensor can tell you generally whether the flap blade is open or closed but can't determine if dust accumulation inside the valve will prevent the valve from closing fully and can't detect dust accumulation while the process is running. Increasing the inspection frequency also doesn't qualify as continuous monitoring or meet the requirements.
The only alternative to the continuous-monitoring requirement is a documented risk assessment along with an inspection protocol and frequency that's acceptable to the authority having jurisdiction (AHJ). You won't know what, if any, risk assessment and inspection protocol and frequency will be acceptable to the AHJ when you're purchasing the valve, however, and a risk assessment is difficult to provide, given the many possible variations in process operating conditions such as material, particle size, humidity, temperature, and airflow. Also, the inspection requirement means that you'll have to frequently shut down the process and open and visually inspect the valve to ensure that no dust is accumulating inside, which may be difficult depending on the valve's physical location and costly due to increased downtime.
To learn about explosion isolation system certification, read the article "NFPA requirements for using an isolation flap valve on your dust collection system" by David Grandaw, IEP Technologies. You can also find articles listed under "Safety" and "Dust collection" in PBE's article archive.